
NOTATION 

x, y, z, Cartesiancoordinates: L, characteristic spatial scale of temperature variations; 
v, mean propagation velocity of thermal phonons; ~p, Ip, relaxationtime and mean free path 
of a thermal phonon; T, characteristic time of temperature variations; a, thermal diffusivity; 
I, thermal conductivity; q, heat flux power; To, initial temperature of the surface of the 
crystal; Ko, MacDonald function; T, absolute temperature; AH, reaction heat; p, density of 
the material; C, heat capacity; cij , elastic coefficients. 
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SOME PROPERTIES OF THE HEAT-TRANSFER PROCESS IN A MOTIONLESS 

MEDIUM, TAKING ACCOUNT OF HEAT-FLUX RELAXATION 

E. I. Levanov and E. N. Sotskii UDC 536.24.02 

The solution of a hyperbolic system of neat-transfer equatlons in which account is 
taken of tne temperature dependence of the thermal conductivity and relaxation time 
of the heat flux is investigated. 

1 ~ A wide range of physical problems leads to the need for detailed study of heat 
{ransfer. The Fourier law is most often used to descrlbe this process 

W :  W r y - -  z g r a d T  (1) 

However, the l i m i t s  of  a p p l i c a b i l i t y  of  the  F o u r i e r  law a r e  p r e s c r i b e a  by the  r e q u i r e m e n t  
of sma l lness  of  the  f r e e - p a t h  l e n g t h  and time of t he  p a r t i c l e s  in  comparison wi th  the  c h a r a c -  
t e r i s t i c  s p a c e - t i m e  s c a l e s  of  t e m p e r a t u r e  v a r i a t i o n  and a r e  o f t e n  o v e r s t e p p e d  in  the  case  of 
i n t e n s e  he a t  t r a n s f e r .  Note a l s o  t h a t  the  hea t  f l u x  cannot  exceed the  maximum v a l u e  d e t e r -  
mined by the  c o n v e n t i o n a l  s i t u a t i o n  in  which a l l  t he  p a r t i c l e s  suddenly  change t h e i r  d i r e c -  
t i o n  of motion and move in the same direction. 
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Fig. i. Qualitative character of integral curves in Eq. (17): a) To = 0 (ci = 0); 
b) 0 < To < Too (0 < c~ < D); c) To = Too (c~ = D); d) To > Too (c~ > D). 

This upper bound on the heat flux is of fundamental importance in describing the elec- 
tron heat conduction of hot plasma [I, 2]. However, the method of taking account of heat- 
flux constraints most widespread in numerical calculations has definite shortcomings, as 
shown in [2]. Strictly speaking, the kinetic equations should be considered. However, in 
view of the considerable demand on machine time, the use of the kinetic equations is not 
always appropriate for problems complicated by taking account of many nonlinear effects. 

On the basis of the foregoing , the urgency of discovering and investigating other 
physically meaningful mathematical models for heat transfer may be understood. 

2 ~ . One such model, known since Maxwell's work [3], is based on the following equation 
for the heat flux 

0W 
. - -  + W = - -  z g r a d T ,  ( 2 )  

Ot 

where T is the relaxation time of the heat flux, equal to the free-path time of the particle 
in order of magnitude. 

In the simplest case, when the thermal conductivity x and relaxation time of the heat 
flux T are constant, it is used, for example, to describe the heat transfer in hereditary- 
elastic materials [4] and in attenuated gases [5-8]. In [9], it was shown that experimental 
data on the propagation of heat pulses in solids at low temperature are in good agreement 
with calculations using Eq. (2). It was noted in [I0] that "the phenomenon of second sound 
observed long ago in liquid helium arose specifically when using a heat-conduction equation 
of hyperbolic type." The use of Eq. (2) in thermoelasticity problems was considered in 
[ii], which also has an additional bibliography on the given problem. 

Under certain assumptions, Eq. (2) may be obtained from the Boltzmann equation using 
the 13-moment method [12, 13]. A nonrigorous but clear derivation of Eq. (2) is possible on 
the basis of the simplest molecular-kinetic considerations [8], if the lag is taken into 
account in the simplest manner. The heat flux transferred by particles through an isolated 
area is not produced immediately at the instant when the temperature gradient acts but some 
time later, when the particles actually reach the area. In the first approximation 

Ox t Ot .t 
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and hence Eq. (2) is obtained. Rewriting Eq. (2) in the form 

O W  W - -  W v  

Ot T 

it may be regarded as the equation for relaxation of the heat flux to its quasi-equilibrium 
value determined by the Fourier law. 

Recently, interest in Eq. (2) has grown because of the proposal that it be used to de- 
scribe the electronic heat conduction of hot plasma [13-16]. It must be emphasized that 
Eq. (2) becomes nonlinear here, since T and ~ depend on the state of the medium. For example, 
for completely ionized plasma, a possible simplication is • T~T s~ [13-17]. 

Below, the properties of the mathematical model of heat transfer based on Eq. (2) are 
investigated; heat transfer in a motionless homogeneous (it is assumed that 0 ~ i, C V = const) 
medium described by the following system of equations is investigated 

OT OW 
C v -  -+- - O, (3) 

Ot Ox 

OW OT 
T - - + •  ~ W = O .  (4) 

Ot Ox 

3 ~ . When ~ = const, T = const, Eqs. (3) and (4) reduce to the equation 

O~T OT • O~T 
_ _  ~ - -  = 0, (5) 

OF" Ot Cv Ox ~ 

which is known to be a particular case of the so-called telegraph equation and is called the 
hyperbolic heat-conduction equation [12, 18]. With an arbitrary temperature dependence of 
• and T, it is necessary to solve Eqs. (3) and (4), which form a system of hyperbolic type. 
The corresponding characteristic equation takes the form 

dx 
- -  4-  e~, c~ = F •  (6) 

dt 

The quantity ci is understood to be the rate ofheat propagation [5, 6, 12, 18]. If ~=• Td, 
T=ToT a, , then c1=~• (a-aO/=, and, in view of the temperature dependence of the local 
slope of the characteristics, characteristics of a single family may intersect. Hence, heat 
transfer may be accompanied by a phenomenon of shock-wave type in gas dynamics, i.e., 
discontinuities of the temperature and heat flux. 

4 ~ . Some solutions of Eqs. (3) and (4) with constant • and T are now given. There have 
been numerous investigations of Eqs. (3) and (4) in this case; see, for example, [4-8, 10-12, 
18-20] and the literature cited there. To solve linear Eq. (5), to which the given system 
reduces, the classical methods of mathematical-physics equations may be used [21]; sometimes, 
they may even be solved accurately. 

a) The solution of the problem of an instantaneous plane heat source (at time t = 0 
in plane x = 0 per unit area, the energy liberated is Eo = CvQo, T(x, 0) = 0 when x # 0) 
takes the form [8] 

(x, t) = Qo ]~V f exp Io H(cat--x) ,  (7)  T 
2~-~ 2T T 2 ~ 
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where H(z) is a unit Heaviside step function: H(z) = 0 when z < 0 and H(z) = 1 when z ~ 0; 
Io is a modified zero-order Bessel function. 

In contrast to the solution of the analogous problem for the ordinary heat-conduction 
equation (T = 0), which takes the form [21] 

: Cv exp , (8) T (x, t) = Qo 4~• 4• 

the temperature is zero when x > clt according to Eq. (7); heat propagates at finite velocity 
ci, and at the thermal wavefront there is a temperature discontinuity. At small times, the 
behavior of the solution of the ordinary and hyperbolic heat-conduction equations -- Eqs. 
(8) and (7) respectively -- differs mostsignificantly. At the same time, as t § ~, the 

asymptotes of Eqs. (7) and (8) coincide, as may be readily established using the asymptotic 
representationof the function Io, valid at large values of the argument 

I 
Io (z) - 2.~z e~ (1 + 0 (I/z)).  

b) Consider the evolution of an initial temperature and heat-flux distribution in a 
heat-insulated region of finite size. Suppose that, on the segment 0 ~ x ~ ~, heat pro- 

pagation is described by Eqs. (3) and (4); the initial conditions are given in the form 

T (x, 0) = To (x); W (x, 0) = Wo (x); 0 ~ x ~ l, (9) 

and t h e  b o u n d a r y  c o n d i t i o n s  a r e  W(0, t )  = W(l ,  t )  = 0.  The s o l u t i o n  o f  t h e  p r o b l e m  o b t a i n e d  
by the variable-separation method is written as follows 

T (x, t )= ao + 2 a+ exp (S+t) cos rmx 2 nnx l + a2 exp ($7t) cos--- /--  
n = l  n = l  

lg (x, t) = 2 b+ exp (S+t)sin ztn____~x q- 2 b~- exp(S~- t)sin fm____x_x 
l l 

n = l  n ~ l  

where 

S ~  - 1 -+_: 1 

2~ 2~ 
]/1 - -  4T.n!• (FCv ) , 

and the series coefficients a + and b + are uniquely determined by the initial data of Eq. (9). 

Some features of the given solution may be noted. 

I) As T § 0, S n § -~, and S+n tends to the corresponding damping decrement for the 
parabolic equation; S+-*'--~n, ~n ~2~n~/(l~Cv) ; see [21], for example. 

2) For any set of values ~, T, CV, Z, a number N is found such that any harmonic n ~N 
will undergo oscillations intime, im(S +) ~ 0. In themselves, these harmonics will be damped 

in proportion to exp (-t/2T) since Re(S + ) = -I/(2T) in this case. 

3) At specified ~,, CV, l, there is a "critical" value T = T,. When T > T,, all the 
harmonics, beginning with the first, undergo oscillations in time. The" critical" value of 
the heat-flux relaxation time is 

% ~ Cv 12 / (4~• 
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and decreases together with the length of the region I. When z > T, the solution is a 
superposition of oscillations damping in proportion to exp (-t/2T). 

4) If T < T,, then at least the first harmonic does not undergo oscillations over 
time. The most slowly damping harmonic in this case is that which corresponds to a plus 
sign of the square root when n = i. When t § ~, the solution tends to regular conditions 

W (x, t) ~ go exp 1 1 -- 2--~ q - ~  ] / !  - -  4 , a~•  t sin (ax/l),." 

T (x, t) ~_ - - [ -  To (x) dx + 
0 

• cos .. exp 

5) The p h y s i c a l  meaning of the  i n e q u a l i t y  

l [g0(l @ V /  1 4wa=• .) 
2a~x "Z2Cv 

- -  + 2---7- 1 l~Cv 

X 

CV 12 T ~ T ,  - -  - -  4a2a ( I0)  

may now be elucidated. Taking account of Eq. (6), Eq. (i0) may be written in the following 
form for the rate of heat propagation c~ 

c lT< l/(2a). (ii) 

Since the relaxation time T is of the order of the free-path time of the particles in the 
material, and the rate of heat propagation ci is of the order of the thermal velocity, the 
quantity on the left-hand side of Eq. %11) is of the order of the free-path length L. Hence, 
the meaning of Eq. (i0) is that L~I/2~. 

5 ~. Generally speaking, Eq. (3) and (4) admit of the existence of solutions where 
sign W = sign(3T/3x) and the heat flux is directed toward increase in temperature. It is 
found that taking account of heat-flux relaxation leads to change in the basic thermodynamic 
inequality for irreversible processes regarding the production of entropy ~: 

q ~ W grad (I/T) ~ 0. 

In [22] ,  Eqo (.12) was g iven in  more genera l  form 
(12) 

a =  ( W q - ~  ~@W) g r a d ( I / T ) ~ 0 ' d t  

Therefore, in describing heat transfer, using Eqs. (3) and (4) there is no violation of the 
second principle of thermodynamics, as may appear to occur on first glance. 

6 ~ Now, letting x=x0 Ta, T=ToTaI,C V = const, the solution of the already-quasilinear 
system in Eqs. (3) and (4) is sought in the form of a traveling wave propagating against a 
constant background. The constant background assumed must obviously be characterized by 
some value T = To and a zero value of W. 

Introducing the independent variable { = x-Dt, where D = const is the velocity of the 
traveling wave, it is found that the desired solution must satisfy a system of ordinary 
differential equations 

- - C v D  aT_ § =0, 
~ a~ (13) 

- -DToT a' d--"~W @• dT @ g ~ o .  
d~ d~ (14) 
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Taking account of the values in the background, the integral of Eq. (13) is written in the 
form 

W =  Cv D (T -- To) 

Substituting Eq. (15) into Eq. (14), the system is reduced to a single ordinary 
differential equation 

(15) 

dT Cv D~% T a' - • Ta 
= 1. (16) 

d~ C v D ( T - - T o )  , 

Without investigating all the possible parameter values in detail, consider the case 
corresponding to completely ionized plasma (a = 5/2, al = 3/2). The solution of Eq. 
(16) then takes the form 

~ - - ~ o - -  2 • Tsj2 , • (CvD~co To]X 
5 Cv D ' Cv D • , 

(17) 

• [23 TzJ~+ 2 T ~  ]/T--]/~oo]/T+]/~oo I] 

The appearance of the free parameter to is due to invariance of Eqs. (13) and (14) relative 
to the transformation ~' = ~ -- ~o. The arbitrariness associated with the choice of ~o may 
be eliminated by specifying the initial (when t = 0) position of the desired traveling wave. 

7 ~ . The qualitative character of Eq. (17) is determined by the relation between To and 
the value of the combination of determining parameters Too = CvD2zo/Zo or, in other words, 
the relation between the travellng-wave velocity D and the velocity of heat propagation 
against the background Cl]T =To = r215 Integral curves are shown in Fig. 1 for the 
cases: a) To = 0 (ci = 0); b) 0 < To < Too (0 < ci < D); c) To = Too (ci = D); d) To > Too 
(ci > D). The corresponding family is obtained by shifting the given curves parallel to 
the axis 0~. 

Considering ~ = x - Dt, it is readily evident that some physical process over time (t 
increases) may correspond to points of the integral curves traced with decrease in ~. In 
the general case, continuous transition from the background to the integral curve is im- 
possible, and the permissible solutions of traveling-wave type must be sought in the class 
of discontinuous functions composed of individual sections of integral curves with a dis- 
continuous transition to the background. 

8 ~ To obtain the conditions which must be satisfied at the discontinuity of the desired 
solution, Eqs. (3) and (4) are written in conservative [23] form 

O ( W ) aW O / u o T a - a l + l \  W 
O....._~Tot + ~ ---C-~v , : o, ~ q- ~ ~ a '-- al + l ToT ~' 

Integration of the equations obtained in the small, compressing to zero volume, region of 
variation of the independent variables (x, t) which includes the discontinuity line gives 
the following relations as analogs of the Hugoniot conditions when a = 5/2, al = 3/2 

W ,  : Cv D (T ,  - -  To), 

T ,  = 2Cv D~'ro/• - -  To oi: T ,  - -  To = 2 (Cv D2zo/• - -  To). 

At arbitrary a and al, Eq. (19) is replaced by the condition 

(18) 

(19) 

T . . . .  +~ - -  T~ - ~ + 1  = % C v  D 2 (a  - -  a l  q -  1) •  ~ I T ,  - -  To).  
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Here D is the rate of propagation of the discontinuity. For solutions of traveling-wave 
type, of course, it coincides with the velocity of wave motion, and therefore the same 
notation may be used; To is the temperature value to the right of the discontinuity, the 
temperature of the unperturbed background; an asterisk denotes values following the discon- 
tinuity, i.e., to the left of it. 

In connection with the foregoing, it must be noted that in [24], where Eqs. (3) and (4) 
were also investigated for parameter values corresponding to the electronic heat conduction 
of hot plasma, errors were introduced in finding self-similar solutions depending on a 
single variable of the form ~ = x/(l -- st). In the solutions obtained there, only the 
temperature undergoes a discontinuity, while the heat flux remains constant at the thermal 
wavefront. 

As is evident from Fig. i, Eq. (19) uniquely determines the temperature behind the dis- 
continuity and hence also the position of the discontinuity in terms of the specified 
parameters. 

Note that, when ci < D, or To > Too = CvD2To/• (Fig. id), Eq. (19) either leads the 
temperature in the region of negative values or places the value of T, on the lowest branch 
T < Too of the integral curve, which is associated with the metastable solution. In this 
case, no solution of the problem exists in the given class of functions (with a discontinuity) 
but there is a continuous solution tending asymptotically to the background as ~ + ~, shown 
by the upper curve lying entirely in the region T > To in Fig. id. 

When ci ~ D or To~ Too, the solution is determined uniquely, as already noted; when 
c~ § D (To § Too), the discontinuous solution transforms to a continuous solution, as 
follows from Eqs. (18) and (19). 

Analysis of the behavior of the characteristics in the vicinity of the discontinuity, 
as well as direct numerical computer calculations of Eqs. (3) and (4) with the corresponding 
initial and boundary conditions, shows the evolutionary character of the solution obtained. 

NOTATION 

x, spatial coordinate; t, time; T, temperature; W, heat flux; WF, heat flux calculated 
from the Fourier law; • thermal conductivity; T, relaxation time of heat flux; p, density; 
CV, specific heat; ci, characteristic rate of heat propagation; D, velocity of motion of 
traveling wave. 
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